Answer:
The chair was pushed with 10 N.
Explanation:
The chair was pushed with 50 Joules.
Work = Force * Distance
50 J = F * 5m
F = 50 / 5 = 10N
The chair was pushed with 10 N.
The chair was pushed with 10 N force.
What is Work done?Work is defined as the measure of energy transfer that occurs when an object is moved over a distance by an external force, at least part of which is applied in the direction of displacement.
If the force is constant then work can be calculated by multiplying the length of the path by the component of the force acting along the path, which is expressed mathematically as work W equal to the force f over a distance d, or W = fd.
So, for above given information,
Work done= 50 joules
Distance covered by the chair = 5m
Then, Force= W/d
=50/5= 10N
Thus, the chair was pushed with 10 N force.
Learn more about Work done, here:
https://brainly.com/question/13662169
#SPJ2
give three factors which are responsible for the vanishing forest
Answer:
1. Huge wildfires
2. Deforestation
3. Reduced amount of aforestation, etc
The Intensity level of a loud saw is 100 db at a distance of 5m. At what distance would the level be 80 db
Answer:
50 m
Explanation:
The relationship between the intensity of sound in dB and distance is given by the formula:
[tex]B_2=B_1+20log(\frac{R_1}{R_2} )\\\\Where \ B_2\ is \ the\ sound\ intensity\ at\ distance\ R_2\ and\\B_1\ is \ the\ sound\ intensity\ at\ distance\ R_1\ \\\\Given\ that: B_1=100\ dB, R_1=5\ m, B_2=80\ dB\\\\B_2=B_1+20log(\frac{R_1}{R_2} )\\\\80=100+20log(\frac{5}{R_2} )\\\\-20=20log(\frac{5}{R_2} )\\\\log(\frac{5}{R_2} )=-1\\\\\frac{5}{R_2}=10^{-1}\\\\\frac{5}{R_2}=0.1\\\\R_2=5/0.1=50\ m[/tex]
The interaction between electrical energy and magnetism has been an important
topic in 20th century science, Which term describes this interaction?
Answer:
Maybe
Explanation:
I say maybe because it will help them still but not quite
Which two types of energy does a book have as it falls to the floor
Answer:
kinetic and potential energy
Explanation:
Open Box. Consider a hollow box with the top missing. The sides have negligible thickness and each has length L and mass m. (a) Find the x-coordinate of the center of mass.
Answer:
x_{cm} = L / 2
Explanation:
The center of mass is defined by
[tex]x_{cm}[/tex] = 1 / M ∑ m_{i} x_{i}
where M is the total mass of the system
in this case the system is continuous so, for which we use the density
ρ = dm / dx
dm = ρ dx
substituting
x_{cm} = 1 / M ∫ x ρ dx
x_{cm} = ρ / M ∫ x dx
we integrate and evaluate from x = 0 to x = L
x_{cm} = ρ / M (L² /2 -0)
we introduce the density which is constant
ρ = M / L
x_{cm} = 1 /M (M/L) L² / 2
x_{cm} = L / 2
3.what does this stand for ??
Answer:
see below
Explanation:
The triangle stands for the change in
We would change the change in x
Answer:
Δ This is the symbol of Delta which means Change
and x is length/distance/position.
Thus, Δx stands for Change in length/distance/position.
-TheUnknownScientist
Help me please :)
Answer the following questions to explain the relationship between electricity and magnetism.
• What are the critical components of an electromagnet and what purpose do they each serve?
• How can the strength of an electromagnet be changed?
• Why is an electromagnet considered a temporary magnet?
Answer the following questions about motors and generators.
• What components are needed for a generator to produce electric current?
• Describe motors and generators in terms of energy input and output.
HELP MEEEEEEEE
Decide if the following statements would be found in the Motor or Generator. Answers can be found at the end of the 3.07 Reading.
Statement Motor or Generator?
Answer:
R u from k12?? i am XD add me on discord my username is Hot Boy#1650
Explanation:
2. A bird flying horizontally at 10 m/s drops a branch. The bird is flying at an altitude of 20 m. Determine
the horizontal displacement it moves relative to where it was dropped.
Answer:
The horizontal displacement is 20 m.
Explanation:
Given that,
Velocity = 10 m/s
Height = 20 m
We need to calculate the time
Using equation of motion
[tex]s=ut+\dfrac{1}{2}gt^2[/tex]
Put the value into the formula
[tex]20=0+\dfrac{1}{2}\times9.8\times t^2[/tex]
[tex]t^2=\dfrac{20\times2}{9.8}[/tex]
[tex]t=\sqrt{\dfrac{20\times2}{9.8}}[/tex]
[tex]t=2.0\ sec[/tex]
We need to calculate the horizontal displacement
Using formula of horizontal displacement
[tex]\Delta x=v_{x}\times t[/tex]
Put the value into the formula
[tex]\Delta x=10\times2.0[/tex]
[tex]\Delta x=20\ m[/tex]
Hence, The horizontal displacement is 20 m.
If an object is moving with a constant velocity to the right, what direction is the net force.
Group of answer choices
A.To the right
B.To the left
C.Net force is 0
D.Not enough information
Answer:
At constant velocity, his weight equals the force of friction. In other words, there is no net force. If however, he loosens his grip and decreases the friction force, he will accelerate downward.
Explanation:
Help me Please!!!!!!!
a man weighing 490 n on earth weighs only 81.7 n on the moon. His mass on the moon is__kg. (Use g=9.8 m/s2
Answer:
m = 50 [kg]
Explanation:
In order to solve this problem we must be clear about the difference between weight and mass. Weight is the product of mass by the acceleration of the planet or the star. While the mass is always preserved it never changes regardless of where it is located.
So for the earth we have:
g = gravity acceleration = 9.8 [m/s^2]
m = mass [kg]
W = weigth = 490 [N]
therefore the mass will be:
m = W/g
m = 490/9.8
m = 50 [kg]
Now it is important to remember that the mass will be the same on the moon or on the earth, but the weight will be different, because the gravity acceleration of the moon is different from the gravity acceleration on earth
So the gravity on the moon is equal to:
81.7 = 50 * gm
gm = 1.634 [m/s^2]
Pressure and temperature ______ with depth below Earth’s surface.
Answer:
Pressure increases as you move deeper below earth's surface.
Tempurature increases as you move deeper below earth's surface.
Hope this helps!
Explanation:
This diagram shows two different forces acting on a skateboarder. The
combined mass of the skateboard and the person is 81.5 kg. Based on this
information, what is the acceleration of the skateboarder?
Air resistance = 11.40 N
mi
Applied force = 52.80
A. 0.51 m/s2 to the left
O B. 1.94 m/s2 to the right
O C. 1.94 m/s2 to the left
O D. 0.51 m/s2 to the right
Answer:
Option D. 0.51 m/s² to the right.
Explanation:
The following data were obtained from the question:
Force applied (Fₐ) = 52.8 N
Force resistance (Fᵣ) = 11.4 N
Mass = 81.5 kg
Acceleration (a) =.?
Next, we shall determine the net force (Fₙ). This can be obtained as follow:
Force applied (Fₐ) = 52.8 N
Force resistance (Fᵣ) = 11.4 N
Net force (Fₙ) =?
Fₙ = Fₐ – Fᵣ
Fₙ = 52.8 – 11.4
Fₙ = 41.4 N to the right
Finally, we shall determine the acceleration of the skateboarder as show below:
Net force (Fₙ) = 41.4 N to the right
Mass = 81.5 kg
Acceleration (a) =..?
F = ma
41.4 = 81.5 × a
Divide both side by 81.5
a = 41.4 / 81.5
a = 0.51 m/s² to the right.
Thus, the acceleration of the skateboarder is 0.51 m/s² to the right.
Answer: .51 to the right
Explanation:
Which famous Baroque period composer wrote 46 pieces of music while in jail?
Answer:
John Sebastian Bach
Answer:
Johann Sebastian Bach
Explanation:
please tell me if i am wrong! thank you!
(A) Electricity and Magnetism
A). Three point charges are aligned along the x axis as shown in
Fig. Find the electric field at (a) the position (2, 0) and (b) the
position (0, 2).
electricity
Explanation:
the position (2,o
Plates slide past one another at____.
A. Subduction zones
B. Transform boundaries
C. Convection currents
D. Divergent boundaries
Answer:
Transform Boundary
Explanation:
The just slide past each other
Answer:
Transform Boundaries
Explanation:
A 1400.0 kg car crests a 3200.0 m pass in the mountains and briefly comes to rest. The car descends 1000 m before climbing and cresting a 2800 m pass. (a) Neglecting friction, what should the speed of the car be at the top of the second pass? (b) Find the actual speed of the car if the work due to nonconservative forces is – 5 x106 J.
Answer:
a) v = 88.54 m/s
b) vf = 26.4 m/s
Explanation:
Given that;
m = 1400.0 kg
a)
by using the energy conservation
loss in potential energy is equal to gain in kinetic energy
mg × ( 3200-2800) = 1/2 ×m×v²
so
1400 × 9.8 × 400 = 0.5 × 1400 × v²
5488000 = 700v²
v² = 5488000 / 700
v² = 7840
v = √7840
v = 88.54 m/s
b)
Work done by all forces is equal to change in KE
W_gravity + W_non - conservative = 1/2×m×(vf² - vi²)
we substitute
1400 × 9.8 × ( 3200-2800) - (5 × 10⁶) = 1/2 × 1400 × (vf² -0 )
488000 = 700 vf²
vf² = 488000 / 700
vf² = 697.1428
vf = √697.1428
vf = 26.4 m/s
At an amusement park, a swimmer uses a water slide to enter the main pool. You may want to review (Pages 234 - 241) . Part A If the swimmer starts at rest, slides without friction, and descends through a vertical height of 2.81 m , what is her speed at the bottom of the slide
Answer:
Her speed at the bottom of the slide is 7.42 m/s
Explanation:
From the question,
The swimmer starts at rest, that is, her initial speed, u is 0 m/s.
Since she slides without friction and descends through a vertical height, then it is a free fall motion (due to gravity).
Also, from the question,
She descends through a vertical height of 2.81 m.
To determine her speed at the bottom of the slide, that is her final speed,
From one of the equations of motion for freely falling bodies
v² = u² + 2gh
Where v is the final speed
u is the initial speed
g is acceleration due to gravity (g = 9.8 m/s²)
and h is height
From the question,
u = 0 m/s
h = 2.81 m
Putting the values into the equation
v² = u² + 2gh
v² = 0² + 2×9.8×2.81
v² = 55.076
v =√55.076
v = 7.42 m/s
Hence, her speed at the bottom of the slide is 7.42 m/s.
D
5. Mariam driving at a speed of 20.0 m/s applies
brakes close to a signal and travels a distance of
200 m before coming to rest. What was her
acceleration?
A. -0.50 m/s2
B. -0.70 m/s2
C. -1.00 m/s2
D. -2.00 m/s2
6. A trollen at rest is nushed to accelerate at a
Answer:
maibi.... D
Explanation:
I think is D
5. A car advertisement states that a certain car can accelerate from rest to 70 m/s in 7
seconds. Find the car's average acceleration.
O-0.10 m/s^2
10 m/s^2
-10 m/s^2
O 0.10 m/s^2
Answer:
The car's average acceleration is [tex]10\ m/s^2[/tex].
Explanation:
Constant Acceleration Motion
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being vo the initial speed, a the constant acceleration, vf the final speed, and t the time, the following relation applies:
[tex]v_f=v_o+at[/tex]
If we need to find the acceleration, we solve the above equation for a:
[tex]\displaystyle a=\frac{v_f-v_o}{t}[/tex]
The car accelerates from rest (vo=0) to vf=70 m/s in t=7 seconds. Substitute the values into the formula:
[tex]\displaystyle a=\frac{70-0}{7}=\frac{70}{7}=10[/tex]
[tex]a=10\ m/s^2[/tex]
The car's average acceleration is [tex]10\ m/s^2[/tex].
Note: The choices are not very clear, but the second choice seems to be the correct answer.
Two boxes of masses 3M and 5M are attached by a massless rope. They are being pulled to the right with a constant force of P = 800 N, which allows them to just overcome static friction, with a μs= 0.70 between the floor and the boxes.
a. Find M.
b. Find the Tension in the rope between the two boxes.
Answer:
a) about 14.577 kg
b) 300 N
Explanation:
b) In order for the acceleration to be the same for each mass, the 800 N force must be divided between the boxes in proportion to their mass. That is, the net force on the 5M mass must be 5/8 of the total force, or 500 N. Then the tension in the rope is 800 N -500 N = 300 N, which is 3/8 of 800 N.
Tension: 300 N
__
a) The total mass is 8M, and the total normal force on the floor is ...
F = ma = (8M)(9.8 m/s^2)
The friction force is 0.7 times this, and is equal to the 800 N force pulling on the boxes.
800 N = (8M)(9.8 m/s^2)(0.7)
M = 800/(8·9.8·0.7) kg ≈ 14.577 kg
The boys are finally old enough to compete in the box car derby race at the local fair. They have been working on their cars since the conclusion of the race last year. One boy's car raced down the track and placed 2nd in his race. However, the other boy's car started well but half-way through the race a wheel came off and his car came to a complete stop. The boy was very disappointed and the other boy felt horrible for his friend. Which of the following graphs best represents the motion of boy's car that stopped?
Newton's first law states that objects do not change their motion unless acted upon by a net force. What does the word 'net' mean in this context?
A woven net, such as a fishing net or basketball net
B To catch or ensnare
C Remaining or left over after everything has been accounted for
D To cover, such as with mosquito netting
A car which is traveling at a velocity of 15 m/s undergoes an acceleration of 6.5 m/s2 over a distance of 340 m. How fast is it going after that acceleration? (68.15 m/s)
v² - u² = 2 a ∆x
where u = initial velocity, v = final velocity, a = acceleration, and ∆x = distance traveled.
So
v² - (15 m/s)² = 2 (6.5 m/s²) (340 m)
v² = 4645 m²/s²
v ≈ 68.15 m/s
At which point on the image to the right would the ball have the greatest velocity if it moved from A to G.
please help me out.
A
B
C
D
E
F
G
Answer:
Total energy = Kinetic Energy + Potential Energy = Constant
Since the potential energy is lowest at point D the kinetic energy will be greatest at point D and the velocity will be the greatest.
A spring is stretched from rest and released. Which of the following describes the
frequency of the spring?
A:the speed of the spring as it passes through the equilibrium position
B: the number of times the spring moves up and down in 1 second
C:the time it takes the spring to compress and then expand once
D: the number of coils on the spring
Explanation:
you have given two questions which one to answer
A 30%-efficient car engine accelerates the 1300 kg car from rest to 10 m/s . How much energy is transferred to the engine by burning gasoline
Answer:
The Energy transferred to the engine by burning gasoline = 216.67 KJ
Explanation:
The parameters given are:
The efficiency of the car engine, E = 30% = 0.3
Mass, m = 1300 kg
Initial velocity, u = 0, since the car is from rest
The final velocity, v = 10 m/s
Since the car was moving, we calculate its kinetic energy.
kinetic energy = ((1/2) (m) (v^2)
((1/2) (1300 kg) (10 m/s^2)
= 65,000 j
The Energy, Q transferred to the engine by burning gasoline in this case
= potential energy / The efficiency of the car engine, E
Q = 65,000 j / 0.3
= 216,666.66 J
Converting Joule to kilojoule
where 1KJ = 1000j
216,666.66 J = 216.67 KJ
What equation relates mechanical energy, thermal energy, and total energy when there is friction present in a system?
The power that a student generates when walking at a steady pace of vw is the same as when the student is riding a bike at vb = 3vw. The student is going to travel a distance d. The energy the student uses when walking is Ew. The energy the student uses when biking is Eb. The ratio EwEb is
Answer:
3
Explanation:
If the body with a mass of 4kg is moved by a force of 20 N, what is the rate of its acceleration?
Answer:
The answer is 5 m/s²Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
[tex]acceleration = \frac{force}{mass} \\[/tex]
From the question
force = 20 N
mass = 4 kg
We have
[tex]a = \frac{20}{4} \\ [/tex]
We have the final answer as
5 m/s²Hope this helps you