Answer:
Let's use the snel's law.
Snell's Law states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the refractive indices of the two media:
sin(i)/sin(r) = n2/n1
Where i is the angle of incidence, r is the angle of refraction, n1 is the refractive index of the first medium (in this case, vacuum), and n2 is the refractive index of the second medium (in this case, the dielectric).
Since vacuum has a refractive index of 1 and the dielectric constant of the medium is 1.25, the refractive index of the medium is also 1.25.
Plugging in the values we have:
sin(20)/sin(r) = 1.25/1
sin(r) = sin(20)/1.25
sin(r) = 0.321
r = sin^-1(0.321)
r = 18.6 degrees
Therefore, the angle of refraction within the medium is approximately 18.6 degrees.
on a sunny day, a diameter of 0.00220m. two objects are 48.4 m from the eye. using 550 nm light, how far apart must they be in order for the eye to resolve them?
[?]m
The two objects must be 0.0001488 meters apart in order for the eye to resolve them when using 550 nm light.
The ability of the eye to resolve two objects depends on the angular resolution, which is determined by the wavelength of light and the diameter of the aperture (in this case, the diameter of the eye's pupil).
To calculate the minimum resolvable angle, we can use the formula:
θ = 1.22 * (λ / D)
where
θ = angular resolution
λ = wavelength of light
D = diameter of the aperture.
Given:
Wavelength of light = 550 nm = 550 *[tex]10^{-9}[/tex] m
Diameter of the aperture (D) = 0.00220 m
Let's calculate the angular resolution:
θ = 1.22 * (550 * [tex]10^{-9}[/tex] m / 0.00220 m)
≈ 3.072 * [tex]10^{-6}[/tex] radians
Now, to determine the distance between the objects (d) required for the eye to resolve them, we can use the formula:
d = r * θ
where
r = distance from the eye to the objects.
Given:
Distance from the eye (r) = 48.4 m
Let's calculate the distance between the objects:
d = 48.4 m * 3.072 * [tex]10^{-6}[/tex] radians
≈ 0.0001488 m
Therefore, the two objects must be approximately 0.0001488 meters (or 0.1488 mm) apart in order for the eye to resolve them when using 550 nm light.
know more about wavelength here:
https://brainly.com/question/10728818
#SPJ8
Una anciana camina 0.30 km en 10 minutos dando la vuelta un centro comercial calcule su rapidez media 
De acuerdo con la información podemos inferir que la rapidez media de la anciana es de 0.03 km/min.
¿Cómo calcular la rapidez media de la anciana?Para calcular la rapidez media, dividimos la distancia recorrida por el tiempo empleado. En este caso, la anciana caminó 0.30 km en 10 minutos. Para obtener la rapidez media, dividimos 0.30 km entre 10 minutos, lo que nos da un valor de 0.03 km/min. Por lo tanto, la anciana tiene una rapidez media de 0.03 km/min.
La rapidez media se expresa en unidades de distancia divididas por unidades de tiempo. En este caso, la anciana recorrió una distancia de 0.30 km en un tiempo de 10 minutos, lo que nos da una rapidez media de 0.03 km/min. Esto significa que en promedio, la anciana camina 0.03 kilómetros por minuto durante su recorrido alrededor del centro comercial.
Aprenda más sobre rapidez en: https://brainly.com/question/24165768
#SPJ1