Answer:
Wavelength = 1.04 meters
Explanation:
Given the following data;
Speed = 509m/s
Frequency = 491Hz
To find the wavelength;
Wavelength = speed/frequency
Wavelength = 509/491
Wavelength = 1.04 meters
Therefore, the guitar player should shorten the length of the string to 1.04 meters.
Answer: 0.52
Explanation:
Which image best illustrates diffraction?
Answer: A
Explanation:
At an amusement park there are 200-kg bumper cars A, B, and C that have riders with masses of 55 kg, 90 kg, and 42.5 kg respectively. Car A is moving to the right with a velocity vA = 2 m/s and car C has a velocity vC = 1.5 m/s to the left, but car B is initially at rest. The coefficient of restitution between each car is 0.8. Determine the final velocity of each car, after all impacts, assuming car A hits car B before car C does. Assume positive sign denoting forward motion and negative sign denoting backward motion.
Answer:
Vb = 0.334 m/s
Va = -1.265 m/s
Vc = 1.424 m/s
Explanation:
Favorite Answer
Initial momentum = 255(2) – 242.5(1.5) = 146.25
Final momentum = 255Va + 290Vb + 242.5 Vc = 146.25
Vb - Va = 0.8(2) = 1.6
Vc - Vb = 0.8(1.5) = 1.2
Va = Vb -1.6
Vc = Vb + 1.2
255(Vb -1.6) + 290Vb + 242.5(Vb + 1.2) = 146.25
255 Vb – 408 + 290 Vb + 242.5 Vb + 291 = 146.25
787.5 Vb = 263.25
Vb = 0.334 m/s
Va = Vb -1.6 = 0.334 – 1.6 = -1.265 m/s
Vc = Vb + 1.2 = 0.224 + 1.2 = 1.424 m/s
explain briefly where the energy come from when a liquid Rises against Gravity in a capillary tube
Answer:
Surface tension
Explanation:
When liquid rises against gravity in a capillary tube, the energy comes from surface tension.
This is because surface tension is the energy that's needed to increase the liquid surface area.
As a result of hydrogen bonding present in Water, it usually has high surface tension which makes it to possess a tough skin that can make it not to break despite high forces applied to it.
The liquid will be in contact with the capillary tube and as such experiences surface tension which in turn makes the capillary tube to experience an upward force that makes the liquid begin to rise up.
The more the liquid keeps rising, the more it gets to the point where the surface tension becomes balanced from the weight of the liquid.
What did Thomas Edison create that made him most famous today? I know it is something about light, but I do not believe he was first. May someone tell me his most famous accomplishment in easy words to understand? Thanks
Explanation:
Thomas Edison invented the incandescent light bulb which is kind of like the light bulbs we use today. but they have been improved throughout the years.
hope this is simple and understandable
Answer:
One of the most famous and prolific inventors of all time, Thomas Alva Edison exerted a tremendous influence on modern life, contributing inventions such as the incandescent light bulb, the phonograph, and the motion picture camera, as well as improving the telegraph and telephone.
Explanation:
Your well-wisher
We intend to measure the open-loop gain (LaTeX: A_{open}A o p e n ) of an actual operational amplifier. The magnitude of LaTeX: A_{open}A o p e n is in the range of 106 V/V. However, the signal generator in measurement setup can supply minimal voltage of 1 mV, and the oscilloscope used at amplifier output can measure maximal voltage level of 10 V. Can you design a simple measurement setup using this signal generator and oscilloscope, and accurately measure the LaTeX: A_{open}A o p e n
Answer:
voltage divider, R₂ = 1000 R₁
measuring the output in the resistance R₁
Explanation:
Let's analyze the situation, in an op amp in open gain loop, the gain is maximum G = 10⁶ V / V
in this case the signal generator gives a minimum wave of 1 10⁻³ V, after passing through the amplified it becomes 10³ V which saturates the oscilloscope.
To solve this problem we must use a simple voltage divider, for this we use the fact that in a series circuit the voltage is the sum of the voltages of each element.
If we use two resistors whose relationship is
R₂ / R₁ = 10³
R₂ = 1000 R₁
When measuring the output in the resistance R₁ we have the desired divider, with a tolerance range, for the minimum output of the generator (1 10⁻³V) we have a reading of V = 1 V in the oscilloscope, for which we can use voltage up to 10V on the generator
g Design an experiment you can use to determine the mass of the metal cylinder. When you explain your experiment, be sure to mention: What is the underlying model (equation) that you can use to determine the mass from your measurements
Answer:
m = [tex]\frac{k}{g}[/tex] x,
graph of x vs m
Explanation:
For this exercise, the simplest way to determine the mass of the cylinder is to take a spring and hang the mass, measure how much the spring has stretched and calculate the mass, using the translational equilibrium equation
F_e -W = 0
k x = m g
m = [tex]\frac{k}{g}[/tex] x
We are assuming that you know the constant k of the spring, if it is not known you must carry out a previous step, calibrate the spring, for this a series of known masses are taken and hung by measuring the elongation (x) from the equilibrium position, with these data a graph of x vs m is made to serve as a spring calibration.
In the latter case, the elongation measured with the cylinder is found on the graph and the corresponding ordinate is the mass
Which of the following statements about treatment for self-injury (SI) is not true?
Answer:
Its true
Explanation:
the motion of a body with respect to another body is?
Answer:
Motion that changes the orientation of a body is called rotation. ... In both cases all points in the body have the same velocity (directed speed) and the same acceleration (time rate of change of velocity).
Answer:
its called relative speed
A piece of gold aluminum alloy weighs 49N. When suspended from a balance and submerged in water it weighs 39.2. What is the weight of gold in the alloy of relative density of gold if 19.3 and aluminum is 2.5
Answer:20.8
Explanation:
Cuestions
A radio station is transmitting at a frequency of 15.42 MHz.Calculate the frequency of
the transmission
Answer:
The wavelength of the transmitting waves is 55.35 m
Explanation:
Radio waves are electromagnetic waves, thus travel at the speed of light (3.0 x [tex]10^{8}[/tex] m/s)
The frequency of transmission = 15.42 MHz
= 15.42 x [tex]10^{6}[/tex] Hz
But,
v = fλ
where: v is the velocity of the wave, f is the frequency and λ is the wavelength
The wavelength of the transmitting waves can be determined by,
λ = [tex]\frac{v}{f}[/tex]
= [tex]\frac{3.0 *10^{8} }{5.42 *10^{6} }[/tex]
= 55.3506
λ = 55.35 m
The wavelength of the transmitting waves is 55.35 m.
Which of the following is NOT a reason
why gravity is important?
A It holds the planets in
orbit around the sun
B. It causes the ocean tides
C. It guides the growth of plants
D. None of the above
Answer:
I'm gonna say d
Explanation:
bc they all seem very important
hope this helped
when a constant force is applied to an object, the acceleration of the object varies inversely with its mass. When a certain constant force acts upon an object with a mass 12 kg, the acceleration of the object is 6 m/s. If the same force acts on another object whose mass is 9kg, what is the objects acceleration
Answer:
8 m/s²
Explanation:
From the question,
Since the same force act on both object,
F = ma = m'a'.............................. Equation 1
Where F = force action on the obeject, m = mass of the first object, a = acceleration of the first object, m' = mass of the second object, a' = acceleration of the second object.
make a' the subject of the equation
a' = ma/m'................... Equation 2
Given: m = 12 kg, a = 6 m/s², m' = 9 kg.
Substitute these values into equation 2
a' = 12(6)/9
a' = 8 m/s².
Hence the acceleration of the second object is 8 m/s²
素 Example three
After an airplane takes off, it travels 10.4 km west, 8.7 km north, and 2.1 km up How far is it
from the take off point?
Solution
Answer:
Let R be the total distance
R²=10.4²+(8.7+2.1)²
R²=10.4²+10.8²
R²=224.8
You square root both sides
R=14.99km
If an airplane takes off, it travels 10.4 km west, 8.7 km north, and 2.1 km up, then using the Pythagorean theorem it is 14.99km from its take-off point.
What is Pythagoras' theorem?Pythagoras' theorem is a fundamental theorem in mathematics that relates to the sides of a right-angled triangle. It states that in a right-angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.
In equation form, the theorem can be written as:
c² = a² + b²
Where
c =the length of the hypotenuse,
a and b = the lengths of the other two sides.
The theorem is named after the ancient Greek mathematician Pythagoras, who is credited with his discovery and proof. Pythagoras' theorem is widely used in mathematics and has many practical applications in fields such as architecture, engineering, and physics.
Here in the question
We can use the Pythagorean theorem to find the distance from the takeoff point:
Distance = √(West)² + (North+Up)²
Plugging in the given values, we get:
Distance = √(10.4)² +( 8.7 + 2.1)²
Distance ≈ 14.99km
Therefore, the airplane is approximately 14.99km away from the takeoff point.
To learn more about Projectile motion click:
https://brainly.com/question/11049671
#SPJ2
One molecule of dinitrogen tetroxide contains...
A.
four nitrogen atoms and four oxygen atoms.
B.
two nitrogen atoms and four oxygen atoms.
C.
four nitrogen atoms and two oxygen atoms.
D.
two nitrogen atoms and two oxygen atoms.
Answer:
C
Explanation:
C is correct
Ok!
151617
Each vertical line on the graph is 1 millisecond (0.001 s) of time. What is the period and
frequency of the sound waves?
Explanation:
Given that,
Each vertical line on the graph is 1 millisecond (0.001 s) of time.
We need to find the period and the frequency of the sound wave. The period of a wave is equal to the each vertical line on graph i.e. 0.001 s.
Let f be the frequency of the sound wave. So,
f = 1/T
i.e.
[tex]f=\dfrac{1}{0.001 }\\\\f=1000\ Hz[/tex]
So, the period and the frequency of the sound waves is 1 milliseond and 1000 Hz respectively.
An amusement park ride called the Rotor debuted in 1955 in Germany. Passengers stand in the cylindrical drum of the Rotor as it rotates around its axis. Once the Rotor reaches its operating speed, the floor drops but the riders remain pinned against the wall of the cylinder. Suppose the cylinder makes 26.0 rev/min and has a radius of 3.70 m. 1) What is the coefficient of static friction between the wall of the cylinder and the backs of the riders
Answer:
μs = 0.36
Explanation:
While the drum is rotating, the riders, in order to keep in a circular movement, are accelerated towards the center of the drum.This acceleration is produced by the centripetal force.Now, this force is not a different type of force, is the net force acting on the riders in this direction.Since the riders have their backs against the wall, and the normal force between the riders and the wall is perpendicular to the wall and aiming out of it, it is easily seen that this normal force is the same centripetal force.In the vertical direction, we have two forces acting on the riders: the force of gravity (which we call weight) downward, and the friction force, that will oppose to the relative movement between the riders and the wall, going upward.When this force be equal to the weight, it will have the maximum possible value, which can be written as follows:[tex]F_{frmax} = \mu_{s}* F_{n} = m * g (1)[/tex]
where μs= coefficient of static friction (our unknown)As we have already said Fn = Fc.The value of the centripetal force, is related with the angular velocity ω and the radius of the drum r, as follows:[tex]F_{n} = m* \omega^{2} * r (2)[/tex]
Replacing (2) in (1), simplifying and rearranging terms, we can solve for μs, as follows:[tex]\mu_{s} = \frac{g}{\omega^{2} r} (3)[/tex]
Prior to replace ω for its value, is convenient to convert it from rev/min to rad/sec, as follows:[tex]\omega = 26.0 \frac{rev}{min} * \frac{1min}{60 sec} *\frac{2*\pi rad }{1 rev} = 2.72 rad/sec (4)[/tex]
Replacing g, ω and r in (3):[tex]\mu_{s} = \frac{g}{\omega^{2} r} = \frac{9.8m/s2}{(2.72rad/sec)^{2} *3.7 m} = 0.36 (5)[/tex]I need help!!!!!!!!!!!pleaseeeeeee
Which of the following is an example of an object with kinetic energy?
a. a plane lifting off of the runway
b. a bobsled perched at the top of a run
c. a snowball tumbling down a hill
d. both a and c
Answer:
A and C
Explanation:
Both have mass and are in motion
Which of these statements is true about the effect of a force exerted upon an object?
A. A large force always produces a large change in the object’s momentum.
B. A small force always produces a large change in the object’s momentum.
C. A small force applied over a long time interval can produce a large change in the object’s momentum.
D. A large force produces a large change in the object’s momentum only if the force is applied over a very short time interval.
Answer:
D. A large force produces a large change in the object’s momentum only if the force is applied over a very short time interval.
Explanation:
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
[tex] Momentum = mass * velocity [/tex]
Also, the impulse of an object is given by the formula;
[tex] Impulse = force * time [/tex]
In accordance with the impulse-momentum theorem, the statement which is true about the effect of a force exerted upon an object is that a large force produces a large change in the object’s momentum only if the force is applied over a very short time interval.
A plastic ball in a liquid is acted upon by its weight and by a buoyant force. The weight of the ball is 4 N. The buoyant force has a magnitude of 5 N and acts vertically upward. When the ball is released from rest, what is it's acceleration and direction? [2 pts] for a Free Body Diagram correctly labeled.
Answer:
The acceleration is 2.448 meters per square second and is vertically upward.
Explanation:
The Free Body Diagram of the plastic ball in the liquid is presented in the image attached below. By Second Newton's Law, we know that forces acting on the plastic ball is:
[tex]\Sigma F = F - m\cdot g = m\cdot a[/tex] (1)
Where:
[tex]F[/tex] - Buoyant force, measured in newtons.
[tex]m[/tex] - Mass of the plastic ball, measured in kilograms.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]a[/tex] - Net acceleration, measured in meters per square second.
If we know that [tex]F = 5\,N[/tex], [tex]m = 0.408\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the net acceleration of the plastic ball is:
[tex]a = \frac{F}{m} - g[/tex]
[tex]a= 2.448\,\frac{m}{s^{2}}[/tex]
The acceleration is 2.448 meters per square second and is vertically upward.
How did Einstein’s and Newton’s theories differ in terms of explaining the cause of gravity?
thank you
Answer:
Newton's theory identified mass as the factor that causes gravity. On the other hand, Einstein's theory identified the curvature of space-time as the factor that causes gravity.
Answer:
Hey mate...
Explanation:
This is ur answer....
In the 17th century Newton concluded that objects fall because they are pulled by Earth's gravity. Einstein's interpretation was that these objects do not fall. According to Einstein, these objects and Earth just freely move in a curved spacetime and this curvature is induced by mass and energy of these objects.
Hope it helps you,
mark me as the brainliest.....
Pls answer my 2 recent questions by going on my account...
Follow me!
A physics student sits in a chair. The chair pushes up on the student's body. Identify the other force of the interaction force pair.
Answer:
gravity pulls down on student the chair pushes up on the student's body with the same force gravity is pulling down on the student
You pull with a force of 295 N on a rope that is attached to a block of mass 22 kg, and the block slides across the floor at a constant speed of 1.6 m/s. The rope makes an angle of 35 degrees with the horizontal. What is the net force on the block
Answer:
Fnet = 0
Explanation:
Since the block slides across the floor at constant speed, this means that it's not accelerated.According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:[tex]F_{appx} = F_{app} * cos \theta = 295 N * cos 35 = 242 N (1)[/tex]
In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:[tex]F_{appy} = F_{app} * cos \theta = 295 N * sin 35 = 169 N (2)[/tex]
⇒ 169 N + Fn = Fg = 216 N (3)
This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:Fn = 216 N - 169 N = 47 N (4)an object is found to have weight of 16.7N on moon
what is it's
weight on earth where g= 10N/kg
Answer:
167 kg
Explanation:
On Earth it is 167 kg. We have to multiply the weight in the Moon by 10 because 1 kg on Earth, is nearly 10 N. 1 kg is 9,8 N in fact, but we get it as 10 N in general.
Do me Brainliest if I helped you. :)
a sentence that describes how energy is related to work
Answer:
Energy should be transferred to an object in order to move it. ... This amount of energy transferred by the force to move an object is called work or work done. Thus, the relation between Work and Energy is direct. That is, the difference in the Kinetic energy of an object is work done by an object
A 0.242 g sample of potassium is heated in oxygen. The result is 0.292 g of a crystalline compound. What is the formula of this compound?
A.
KO3
B.
KO2
C.
KO
D.
K2O
Answer:
Hello there Dude answer is B :D hope it helped mark me brainliest.
The formula of the compound formed has been [tex]\rm \bold {K_2O}[/tex]. Thus, option D is correct.
The sample of potassium has mass of 0.242 g. Since, the substance has been heated in the presence of oxygen, the gain in the weight has been corresponds with the mass of oxygen.
The given sample has:
Mass of potassium, [tex]m_K=0.242\;\text g[/tex]
Mass of heated sample, [tex]m_S=0.292\;\text g[/tex]
The mass of oxygen ([tex]m_O[/tex]) in the sample has been given as:
[tex]m_O=m_S-m_K[/tex]
Substituting the values:
[tex]m_O=0.292\;-\;0.242\;\text g\\m_O=0.05\;\text g[/tex]
The mass of oxygen in the sample has been 0.05 g.
The moles (M) of compounds in the sample has been given as:
[tex]M=\dfrac{m}{mwt}[/tex]
Where, m has been the mass of the compound, and
mwt has been the molecular weight of the compound.
The moles of potassium ([tex]M_K[/tex]) has been given as:
[tex]M_K=\dfrac{0.242}{39.098}\\M_K=0.006\;\text mol[/tex]
The moles of oxygen ([tex]M_O[/tex]) has been given as:
[tex]M_O=\dfrac{0.05}{16}\\M_O=0.003\;\text mol[/tex]
The molecular compound has been formed with Potassium and oxygen in the ratio of their moles as:
[tex]\rm \dfrac{K}{O}=\dfrac{0.006}{0.003}\\ \dfrac{K}{O}= \dfrac{2}1}[/tex]
Thus, the molecular formula of the compound has been [tex]\rm \bold {K_2O}[/tex]. Thus, option D is correct.
For more information about molecular formula, refer to the link:
https://brainly.com/question/1247523
1. Describe how unequal heating and rotation of the Earth causes atmospheric and oceanic circulation patterns that determine the regional and global climate.
A woman pushes a 35.0 kg object at a constant speed for 10.8 m along a level floor, doing 280 J of work by applying a constant horizontal force of magnitude F on the object. (a) Determine the value of F (in N). (Enter the magnitude.) N (b) If the worker now applies a force greater than F, describe the subsequent motion of the object. The object's speed would increase with time. The object's speed would remain constant over time. The object would slow and come to rest. (c) Describe what would happen to the object if the applied force is less than F. The object's speed would increase with time. The object's speed would remain constant over time. The object would slow and come to rest.
Answer:
a) F= 25.9 N
b) The object's speed would increase with time.
c) The object would slow and come to rest.
Explanation:
a)
By definition of work, this is the process through which a force applied on an object, produces a displacement of the object.If the force is constant, and the displacement is parallel to the direction of the force, this work is just the product of the applied force times the distance, as follows:[tex]W = F_{app} * d (1)[/tex]
We can solve for Fapp, replacing W and d by their values:[tex]F_{app} =\frac{W}{d} = \frac{280J}{10.8m} = 25.9 N (2)[/tex]
b)
If the object is moving at constant speed when it is applied a force F, this means that this force must be compensated by an equal opposite force, in this case, the kinetic friction force.Since this force is constant while the object is moving, if we increase the force F making it larger, there will be a net force in the direction of the displacement, which will cause an acceleration that will increase the speed with time.c)
We have already said in b) that if the object is moving at constant speed, there must be an equal and opposite force to the applied force F, the kinetic friction force, which is constant, acting on the object.If we apply a force less than F, there will be a net force in the direction opposite to the displacement, that will cause a acceleration opposite to the displacement, which will make the object to slow down and eventually come to rest.The amplitude of a wave
determines the volume of a
sound.
True
O False
PLEASE CLICK ON THIS IMAGE I NEED HELP
Answer:
Second option
Explanation:
"Uniform" pretty much means the same thing happens.