Sarah complete a long jump competition
Her firt jump i 4. 25m
Her bet jump i 12% more than thi
However her bet jump in 15% lower than the winning jump
What i the winning jump?

Answers

Answer 1

The winning jump in the long jump competition is 5.63m.

Complete Question: Sarah competes in a long jump competition.  Her first jump is 4.25m.  Her best jump is 12% more than this.  However her best best jump is 15% lower than the winning jump.  Work out the length of the winning jump.

We can start by using the information given to set up equations to find the distance of Sarah's second and third jumps, and then the winning jump.

We know that Sarah's first jump is 4.25m and that her second jump is 12% more than this, so we can find her second jump distance by applying the 12% increase:

4.25m + (12/100)*4.25m = 4.25m + 0.51m = 4.76m

We also know that Sarah's third jump is 15% lower than the winning jump in the long jump competition 5.63m. jump, so we can find the winning jump distance by applying the 15% decrease:

Winning Jump = 4.76m / (1- 15/100) = 4.76m / 0.85 = 5.63m

So the winning jump in the long jump competition is 5.63m.

Therefore, The winning jump in the long jump competition is 5.63m.

To learn more about equations,

Visit; brainly.com/question/29657983

#SPJ4


Related Questions

Mark each series as convergent or divergent. 1. ∑n=1[infinity] ln(n)/5n 2. ∑n=1[infinity] 1/(5+n^(2/3)) 3. ∑n=1[infinity] (5+9^n)/(3+6^n) 4. ∑n=2[infinity] 4/(n^5−4) 5. ∑n=1[infinity] 4/(n(n+5))

Answers

1. ∑n=1[infinity] ln(n)/5n:

We can use the integral test to determine whether this series is convergent or divergent. Let f(x) = ln(x)/5x. Then, f'(x) = (5-ln(x))/(5x)^2. Since f'(x) is negative for x >= e^5, f(x) is a decreasing function for x >= e^5. Thus, we have:

∫[1,infinity] ln(x)/5x dx = [ln(x)^2/10]_[1,infinity] = infinity

Since the integral diverges, the series also diverges.

2. ∑n=1[infinity] 1/(5+n^(2/3)):

Since the series has positive terms, we can use the p-test with p=2/3 to determine its convergence. We have:

lim[n→infinity] n^(2/3)/(5+n^(2/3)) = 0

Since 2/3 < 1, the series converges.

3. ∑n=1[infinity] (5+9^n)/(3+6^n):

We can use the ratio test to determine whether this series is convergent or divergent. We have:

lim[n→infinity] (5+9^(n+1))/(3+6^(n+1)) * (3+6^n)/(5+9^n) = 3/2

Since the limit is less than 1, the series converges.

4. ∑n=2[infinity] 4/(n^5−4):

We can use the comparison test to determine whether this series is convergent or divergent. Since n^5 > 4 for all n >= 2, we have:

0 < 4/(n^5-4) <= 4/n^5

Since ∑n=1[infinity] 4/n^5 converges (by the p-test with p=5), the series also converges by the comparison test.

5. ∑n=1[infinity] 4/(n(n+5)):

We can use the partial fraction decomposition to write:

4/(n(n+5)) = 4/5 * (1/n - 1/(n+5))

Thus, we have:

∑n=1[infinity] 4/(n(n+5)) = 4/5 * (∑n=1[infinity] 1/n - ∑n=6[infinity] 1/n)

The second series is a harmonic series with terms decreasing to 0, which means it diverges. The first series is the harmonic series with terms decreasing to 0 except for the first term, which means it also diverges. Therefore, the original series diverges.

To know more about diverges and converges , refer here :

https://brainly.com/question/31778047#

#SPJ11

how long does it take for $3,850 to double if it is invested at 8% compounded continuously? round your answer to two decimal places.

Answers

8.66 years for 3,850 to double if it is invested at 8% compounded continuously.

Rounded to two decimal places, the answer is 8.66 years.

The continuous compounding formula is given by:

A =[tex]P\times e^{(rt)[/tex]

A is the amount of money at time t, P is the principal, r is the annual interest rate, and e is the base of the natural logarithm.

P = 3850, r = 0.08, and we want to find the time t it takes for the money to double, means A = 2P = 7700.

Plugging in these values, we get:

7700 = [tex]3850\times e^{(0.08t)[/tex]

Dividing both sides by 3850, we get:

2 = [tex]e^{(0.08t)[/tex]

Taking the natural logarithm of both sides, we get:

ln(2) = 0.08t

Solving for t, we get:

t = ln(2)/0.08 ≈ 8.66

For similar questions on invested

https://brainly.com/question/25893158

#SPJ11

Solving an exponential equation we can see that it takes 8.66 months.

How long does it take to double?

The formula for continuous compound is:

[tex]P = A*e^{r*t}[/tex]

Where A is the initial amount, r is the rate (in this case 8% as a decimal, so it is 0.08) and t is the time (in this case we don't know the units for time, let's say that it is in months).

The doubling time is the value of t such that the second factor is equal to 2, then we need to solve:

[tex]e^{0.08*t} = 2\\[/tex]

Now apply the natural logarithm in both sides and solve for t:

[tex]ln(e^{0.08*t}) = ln(2)\\0.08*t = ln(2)/ln(e)\\t = ln(2)/0.08[/tex]

Where we used that ln(e) = 1

t = 8.66

It takes 8.66 months.

Learn more about exponential equations:

https://brainly.com/question/11832081

#SPJ4

use the given transformation to evaluate the integral. (16x 16y) da r , where r is the parallelogram with vertices (−3, 9), (3, −9), (5, −7), and (−1, 11) ; x = 1 4 (u v), y = 1 4 (v − 3u)

Answers

The given integral over the parallelogram can be evaluated using the transformation x = (1/4)(u+v) and y = (1/4)(v-3u) as (16/3) times the integral of 1 over the unit square, which is equal to (16/3).

The transformation x = (1/4)(u+v) and y = (1/4)(v-3u) maps the parallelogram with vertices (-3,9), (3,-9), (5,-7), and (-1,11) onto the unit square in the u-v plane. The Jacobian of this transformation is 1/4 times the determinant of the matrix [1 1; -3 1] = 4.

Therefore, the integral of f(x,y) = 16x 16y over the parallelogram is equal to the integral of f(u,v) = 16(1/4)(u+v) 16(1/4)(v-3u) times 4 da over the unit square in the u-v plane. Simplifying, we get the integral of u+v+v-3u da, which is equal to the integral of -2u+2v da.

Since this is a linear function of u and v, the integral is equal to zero over the unit square. Thus, the value of the given integral over the parallelogram is (16/3).

For more questions like Integral click the link below:

https://brainly.com/question/22008756

#SPJ11

write an equation of an ellipse with the center ( 2, -4 ), and with a vertical major axis of length 14, and a minor axis of length 6.

Answers

equation of an ellipse with the center ( 2, -4 ), and with a vertical major axis of length 14, and a minor axis of length 6 is [tex]\frac{(x-2)^{2} }{49 } +\frac{(y+4)^{2} }{9 } = 1[/tex]

The standard form for an ellipse with a vertical major axis

[tex]\frac{(x-h)^{2} }{a^{2} } +\frac{(y-k)^{2} }{b^{2} } = 1[/tex]

where (h, k) represents the center of the ellipse, a is the semi-major axis length, and b is the semi-minor axis length.

Center: (2, -4)

Vertical major axis length: 14

Minor axis length: 6

The center of the ellipse is (h, k) = (2, -4).

The semi-major axis length a is half of the major axis length,

a = 14 / 2

a = 7.

The semi-minor axis length b is half of the minor axis length,

b = 6 / 2

b = 3.

Putting these values into the standard form equation, we get

[tex]\frac{(x-2)^{2} }{7^{2} } +\frac{(y+4)^{2} }{3^{2} } = 1[/tex]

Simplifying the equation gives the final equation of the ellipse

[tex]\frac{(x-2)^{2} }{49 } +\frac{(y+4)^{2} }{9 } = 1[/tex]

To know more about ellipse click here :

https://brainly.com/question/32248620

#SPJ4

let f be the function defined by f(x)=x√3 . what is the approximation for f (10) found by using the line tangent to the graph of f at the point (8, 2) ?

Answers

The approximation for f(10) using the line tangent to the graph of f at the point (8, 2) is 22.73.

To explain this, we can use the concept of the tangent line approximation. The tangent line to the graph of f at the point (8, 2) represents the best linear approximation to the function near that point. The slope of the tangent line can be found by taking the derivative of f at x = 8.

Differentiating f(x) = x√3 with respect to x gives us f'(x) = √3. Evaluating f'(8), we find that the slope of the tangent line is √3.

Using the point-slope form of a linear equation, the equation of the tangent line is y - 2 = √3(x - 8).

To approximate f(10), we substitute x = 10 into the equation of the tangent line:

y - 2 = √3(10 - 8)

y - 2 = 2√3

y ≈ 2 + 2√3 ≈ 5.46

Therefore, the approximation for f(10) using the line tangent to the graph of f at the point (8, 2) is approximately 22.73.

To learn more about tangent click here, brainly.com/question/10053881

#SPJ11

Simplify the following expression. d/dx integration x^3 8 dp/p^2 d/dx integration x^3 8 dp/p^2 =

Answers

The expression d/dx [∫x³(8/p²)dp] can be simplified by integrating with respect to p, differentiating with respect to x using the product rule, and then factoring out common terms.

The expression d/dx [∫x³(8/p²)dp] involves differentiation and integration. To simplify it, we can first integrate x³(8/p²) with respect to p, which gives us -8x³/p + C, where C is the constant of integration. Then, we differentiate this expression with respect to x using the product rule of differentiation, which involves taking the derivative of x³ and multiplying it by (-8/p), and adding the derivative of (-8/p) multiplied by x³.

Simplifying this expression gives us 8x²(1 - 3/p) / p². This final expression can be further simplified by factoring out 8x^2/p², which leaves us with 1 - 3/p in the numerator. We can also write the expression as (8x²/p²) - (24x²/p³), which shows that the expression is the difference of two terms.

For more about integrating:

https://brainly.com/question/14502499

#SPJ4

The table shows the result of regressing college GPA on high school GPA and study time for a sample of 59 students. Explain in nontechnical terms what it means if the population slope coefficient for high school GPA equals 0. Choose the correct answer below. For some students, high school GPA doesn't predict college GPA. For all students, high school GPA doesn't predict college GPA for students having any given value for study time. For all students, high school GPA predicts college GPA for students having any given value for study time. For some students, high school GPA predicts college GPA for students having more study time.

Answers

In this scenario, the process of "regressing" refers to analyzing the relationship between college GPA, high school GPA, and study time for a sample of 59 students.

The "slope coefficient" is a measure that shows how much the dependent variable (in this case, college GPA) changes when the independent variable (high school GPA) changes by one unit, while holding the other variable (study time) constant.

Now, if the population slope coefficient for high school GPA equals 0, it means that there is no significant relationship between high school GPA and college GPA when considering any given value for study time. In other words, high school GPA does not predict college GPA for students, regardless of their study time.

To put it in simpler terms, this finding suggests that for all students, their high school GPA does not provide any reliable information about their college GPA, no matter how much they study. The relationship between the two variables is essentially non-existent, and other factors may be more important in determining a student's college GPA.

Learn more about slope coefficient here:

https://brainly.com/question/22264821

#SPJ11

Let X follow a Uniform(2, 10) distribution. How do we compute P(X<5)? [Select ] How do we compute P(3 < X < 7) in R? (Select] < What is the probability that X takes value between 3 and 5?

Answers

The probability that X takes a value between 3 and 5 can be computed as P(3 < X < 5). Using the same approach as above, we substitute x = 5 into the CDF formula to get (5 - 2) / (10 - 2) = 3 / 8. Subtracting the probability P(X < 3) (which is 0 since the lower bound is 2), we have P(3 < X < 5) = 3 / 8 - 0 = 3 / 8.

To compute P(3 < X < 7) in R, we can use the "punif()" function, which calculates the probability of a value falling within a range for a uniform distribution. In R, the command would be "punif(7, min = 2, max = 10) - punif(3, min = 2, max = 10)". This calculates the difference between the probabilities of X being less than 7 and X being less than 3, giving us the probability of the range 3 < X < 7.

The probability that X takes a value between 3 and 5 can be computed as P(3 < X < 5). Using the same approach as above, we substitute x = 5 into the CDF formula to get (5 - 2) / (10 - 2) = 3 / 8. Subtracting the probability P(X < 3) (which is 0 since the lower bound is 2), we have P(3 < X < 5) = 3 / 8 - 0 = 3 / 8.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

a test score of 84 was transformed into a standard score of –1.5. if the standard deviation of test scores was 4, what is the mean of the test scores?

Answers

The mean of the test scores is 90.

We can use the formula for converting a raw score (x) to a standard score (z) given the mean (μ) and standard deviation (σ):

z = (x - μ) / σ

In this case, we know that x = 84, z = -1.5, and σ = 4. We can solve for μ as follows:

-1.5 = (84 - μ) / 4

Multiplying both sides by 4, we get:

-6 = 84 - μ

Subtracting 84 from both sides, we get:

μ = 84 - (-6) = 90

Therefore, the mean of the test scores is 90.

To know more about standard deviation refer here:

https://brainly.com/question/31101410?#

#SPJ11

Find the range of the following function if the domain is {−6, 1, 4}.g(x) = −4x + 2

Answers

Answer:

Step-by-step explanation:

To find the range of the function g(x) = -4x + 2, we need to determine the set of all possible output values for the given domain.

We are given the domain: {-6, 1, 4}.

Let's evaluate the function for each value in the domain:

For x = -6:

g(-6) = -4(-6) + 2 = 24 + 2 = 26

For x = 1:

g(1) = -4(1) + 2 = -4 + 2 = -2

For x = 4:

g(4) = -4(4) + 2 = -16 + 2 = -14

The corresponding outputs for the given domain are {26, -2, -14}.

Therefore, the range of the function g(x) = -4x + 2, for the given domain {-6, 1, 4}, is {26, -2, -14}.

Marco has a piece of wire 18 inches long. He wants to bend the wire into a triangle. Which of the


following combinations of side lengths are possible for the triangle Marco creates?


A


1 in. , 9 in. , 8 in.


с


12 in. , 3 in. , 3 in.


00


B


3 in. , 5 in. , 10 in.


D


2 in. , 8 in. , 8 in.

Answers

The combination of side lengths that is possible for the triangle Marco creates is C: 12 in., 3 in., 3 in.

To determine if a triangle can be formed using the given side lengths, we need to apply the triangle inequality theorem, which states that the sum of any two side lengths of a triangle must be greater than the length of the third side.

In combination A (1 in., 9 in., 8 in.), the sum of the two smaller sides (1 in. + 8 in.) is 9 in., which is not greater than the length of the remaining side (9 in.). Therefore, combination A is not possible.

In combination B (3 in., 5 in., 10 in.), the sum of the two smaller sides (3 in. + 5 in.) is 8 in., which is not greater than the length of the remaining side (10 in.). Hence, combination B is not possible.

In combination C (12 in., 3 in., 3 in.), the sum of the two smaller sides (3 in. + 3 in.) is 6 in., which is indeed greater than the length of the remaining side (12 in.). Thus, combination C is possible.

In combination D (2 in., 8 in., 8 in.), the sum of the two smaller sides (2 in. + 8 in.) is 10 in., which is equal to the length of the remaining side (8 in.). This violates the triangle inequality theorem, which states that the sum of any two sides must be greater than the length of the third side. Therefore, combination D is not possible.

Therefore, the only combination of side lengths that is possible for the triangle Marco creates is C: 12 in., 3 in., 3 in.

To learn more about triangle inequality theorem visit:

brainly.com/question/30097379

#SPJ11

Imagine you are testing for the effects of two experimental drugs (data set B and C), relative to a control group (Data set A) on a physiological variable. Use the Bonferroni-Holm (regardless of whether part "a" is significant or not) to examine all pairwise comparison. Show all calculations and state your conclusions.
Note: I’ve already added 0.1 and 0.2 to necessary data sets. I’ve completed part a, I need help with part B.
Please show all the steps to solving this, thank you.

Answers


To use the Bonferroni-Holm correction for pairwise comparisons between three groups (A, B, and C), we must adjust the p-value threshold to account for multiple comparisons. First, we calculate the p-value for each pairwise comparison. Then, we rank the p-values from smallest to largest and compare them to the adjusted threshold, which is calculated by dividing the significance level (0.05) by the number of comparisons (3). If the p-value for a comparison is less than or equal to the adjusted threshold, we reject the null hypothesis for that comparison. Otherwise, we fail to reject the null hypothesis.


To apply the Bonferroni-Holm correction to this experiment, we first need to calculate the mean and standard deviation for each dataset. We can then perform pairwise comparisons using a t-test, assuming equal variance.

The calculations for part a are as follows:

- t-value for comparison between A and B = 3.88
- t-value for comparison between A and C = 5.16
- p-value for comparison between A and B = 0.0035
- p-value for comparison between A and C = 0.0002

Since both p-values are less than 0.05, we reject the null hypothesis and conclude that there is a significant difference between the control group and both experimental groups.
To apply the Bonferroni-Holm correction, we must adjust the significance level for multiple comparisons. In this case, we are making three comparisons (A vs. B, A vs. C, and B vs. C), so we divide the significance level by three: 0.05/3 = 0.0167.
Next, we rank the p-values in ascending order:
1. A vs. B (p = 0.0035)
2. A vs. C (p = 0.0002)
3. B vs. C (p = 0.3)
We compare each p-value to the adjusted threshold:

1. A vs. B (p = 0.0035) is less than or equal to 0.0167, so we reject the null hypothesis.
2. A vs. C (p = 0.0002) is less than or equal to 0.0083, so we reject the null hypothesis.
3. B vs. C (p = 0.3) is greater than 0.005, so we fail to reject the null hypothesis.

Using the Bonferroni-Holm correction, we found that there is a significant difference between the control group (A) and both experimental groups (B and C). However, there is no significant difference between groups B and C. This suggests that both experimental drugs have a similar effect on the physiological variable being measured.

To know more about null hypothesis visit:

https://brainly.com/question/30821298

#SPJ11

The fish population of Lake Parker is decreasing at a rate of 3% per year. In 2015, there were about 1,300 fish. Write an exponential decay function to model this situation. Then, find the population in 2021.

y=1,300(0. 97)tThe population is 2021 will be about 1,083 fish.

B. Y=1,300(0. 03)tThe population is 2021 will be about 1,080 fish.

C. Y=1,300(0. 97)tThe population is 2021 will be about 234 fish.

D. Y=1,300(0. 7)tThe population is 2021 will be about 153 fish. PLS PLS HELP ME NO LINKS(WILL ALSO MARK BRAINLIEST)

Answers

The correct option is B) [tex]Y=1,300(0.97)^t[/tex]. The population in 2021 will be about 1,080 fish.The fish population of Lake Parker is decreasing at a rate of 3% per year. In 2015, there were about 1,300 fish.

To model the exponential decay of the fish population in Lake Parker, we can use the formula:

[tex]y = 1,300 * (0.97)^t[/tex]

Where: y represents the fish population at a given time

t represents the number of years since 2015

To find the population in 2021 (6 years after 2015), we substitute t = 6 into the equation:

[tex]y = 1,300 * (0.97)^6[/tex]

Calculating the value:

y ≈ 1,300 * 0.8396

y ≈ 1085.48

Rounded to the nearest whole number, the population in 2021 is approximately 1085 fish.

Therefore, The correct option is B) [tex]Y=1,300(0.97)^t[/tex]. The population in 2021 will be about 1,080 fish

to know more about rate visit :

https://brainly.com/question/25565101

#SPJ11

given the following equations of parabolas graph each. 1.y=(x-4)^2-6
2.y=3(x+2)^2+1
3.y=-2(x-3)^2-4
4.y=1/2(X+4)^2-1

Answers

The graphed parabolas are attached accordingly.

What is a parabolic function?

A parabolic function is one that has the formula f(x) = ax2 + bx + c. It is a second-degree quadratic expression in x. Because the graph of the parabolic function is similar to that of the parabola, the function is called a parabolic function.

For two distinct domain values, the parabolic function has the same range value.

To get the equation of a parabola, we can utilize the vertex form.

The aim is to formulate its equation in the form y=a(xh)2+k (assuming we can get the coordinates (h,k) from the graph) and then calculate the value of the coefficient a using the coordinates of its vertex (maximum point, or minimum point).

Learn more about parabolas  at:

https://brainly.com/question/29267743

#SPJ1

For the subspace below, (a) find a basis for the subspace, and (b) state the dimension. s-2t s+ s, t in R 2t (a) Find a basis for the subspace. A basis for the subspace is (Use a comma to separate answers as needed.) For the subspace below, (a) find a basis, and (b) state the dimension 12a24b -4c 6a -2b -2c 3a5b+c -3a bc a. Find a basis for the subspace. : a, b, c in R A basis for the subspace is (Use a comma to separate vectors as needed.)

Answers

(a) A basis for the subspace is s = (-2, 1) and t = (1, 0).

(b) The dimension of the subspace is 2.

What is the basis for the given subspace and what is its dimension?

To find the basis for the subspace, we need to determine a set of linearly independent vectors that span the subspace. In this case, the subspace is defined as s - 2t, s + s, and 2t, where s and t are vectors in R.

By simplifying the expressions, we can rewrite them as (-2, 1), (1, 1), and (0, 2), respectively. These vectors form a basis for the subspace since they are linearly independent and span the subspace.

Therefore, a basis for the subspace is s = (-2, 1) and t = (1, 0).

The dimension of the subspace is determined by the number of linearly independent vectors in the basis. In this case, we have two linearly independent vectors, so the dimension of the subspace is 2.

Learning more about subspace

brainly.com/question/26727539

#SPJ11

Suppose the inverse demand function is: P = 12 - Q, and the cost is given by C(Q) = 4Q. If marginal revenue is MR = 12 - 2Q and marginal cost is MC = 4, then the profit-maximizing level of output equals ____ and the profit-maximizing price equals $____.

Answers

The profit-maximizing level of output is 4 units, the profit-maximizing price is $8, and the maximum profit is $16.

To find the profit-maximizing level of output, we need to find the level of output where marginal revenue equals marginal cost:

MR = MC

12 - 2Q = 4

8 = 2Q

Q = 4

So the profit-maximizing level of output is 4 units.

To find the profit-maximizing price, we need to use the inverse demand function to find the price corresponding to an output of 4:

P = 12 - Q

P = 12 - 4

P = 8

So the profit-maximizing price is $8.

To find the profit, we need to calculate total revenue and total cost at the profit-maximizing level of output:

TR = P x Q = 8 x 4 = 32

TC = C(Q) = 4Q = 4(4) = 16

Profit = TR - TC = 32 - 16 = 16

So the profit-maximizing level of output is 4 units, the profit-maximizing price is $8, and the maximum profit is $16.

To know more about profit-maximizing refer here:

https://brainly.com/question/28387930

#SPJ11

Evaluate the integral.
3/2 3|sin(x)| dx
0

Answers

The value of the integral is 3.

To evaluate the integral, we first need to consider the absolute value of sin(x) over the given interval. The function sin(x) oscillates between -1 and 1 as x increases from 0 to 3. Therefore, we can break up the integral into two parts:

∫[0, π/2] 3/2 (sin(x)) dx + ∫[π/2, 3π/2] 3/2 (-sin(x)) dx

Using the formula for the integral of sin(x) and the constant multiple rule of integration, we get:

= [-3/2 cos(x)] from 0 to π/2 + [3/2 cos(x)] from π/2 to 3π/2

= [-3/2 cos(π/2) + 3/2 cos(0)] + [3/2 cos(3π/2) - 3/2 cos(π/2)]

= 3

Therefore, the value of the integral is 3.

Learn more about "integral ":

https://brainly.com/question/22008756

#SPJ11

FILL IN THE BLANK a/an ____________________________ diagram can be used to show how the tables in a database are defined and related..

Answers

A/an database schema diagram can be used to show how the tables in a database are defined and related.

This type of diagram provides a visual representation of the structure and organization of the database. It illustrates the tables ,and  their attributes, and the relationships between them.

The database schema diagram helps in the  understanding the logical design of the database, including primary keys, for  foreign keys, and the connections between different tables. It allows developers, database administrators, and stakeholders to visualize the database structure and serves it as a reference for in  designing, modifying, and querying the database effectively.

To learn more about  database click here:

brainly.com/question/31664263

#SPJ11

Consider the ordered basis B of R^2 consisting of the vectors [1 -6] and [2 -1] (in that order) . Find the vector X in R^2 whose coordinates with respect to the basis B are '[6 -1] , x = ____.

Answers

The vector X in [tex]R^{2}[/tex] whose coordinates with respect to the basis B are [6, -1] is X = [4, -35]

An ordered basis B in [tex]R^{2}[/tex] is a pair of linearly independent vectors that can be used to uniquely represent any vector in the 2-dimensional space.

In this case, the ordered basis B consists of the vectors [1, -6] and [2, -1].
A vector X in [tex]R^{2}[/tex] can be written as a linear combination of the basis vectors. To find the vector X whose coordinates with respect to basis B are [6, -1], we can represent it as follows:
X = 6 × [1, -6] + (-1) × [2, -1]
Now, we just need to perform the linear combination:
X = 6 × [1, -6] + (-1) × [2, -1]
X = [6 × 1, 6 × (-6)] + [(-1) × 2, (-1) × (-1)]
X = [6, -36] + [-2, 1]
Next, add the corresponding components of the two resulting vectors:
X = [(6 + -2), (-36 + 1)]
X = [4, -35]

Learn more about linear combination here:

https://brainly.com/question/30893984

#SPJ11

The picture below shows a box sliding down a ramp:
65 c
What is the distance, in feet, that the box has to travel to move from point A to point C?
12 ft
B
12 cos 65°
12
sin 65
12 sin 65°
12
cos 65

Answers

The distance that the box has to travel to move from point A to point C is the length of the hypotenuse, which is 12 feet.

To find the distance that the box has to travel to move from point A to point C, we need to find the length of the hypotenuse of the right triangle formed by the ramp.

From the diagram, we see that the vertical height of the ramp is 12 sin 65° and the horizontal length of the ramp is 12 cos 65°. Using the Pythagorean theorem, we can find the length of the hypotenuse:

[tex]hypotenuse^2[/tex] = (12 cos 65°[tex])^2[/tex] + (12 sin 65°[tex])^2[/tex]

[tex]hypotenuse^2[/tex] = 144 [tex]cos^2[/tex] 65° + 144 [tex]sin^2[/tex] 65°

[tex]hypotenuse^2[/tex] = 144 ([tex]cos^2[/tex] 65° + [tex]sin^2[/tex]65°)

[tex]hypotenuse^2[/tex] = 144

hypotenuse = 12

Therefore, the distance that the box has to travel to move from point A to point C is the length of the hypotenuse, which is 12 feet.

for such more question on distance

https://brainly.com/question/7243416

#SPJ11

A negative value of z indicates that:a. the number of standard deviations of an observation is below the mean.b. the data has a negative mean.c. the number of standard deviations of an observation is above the mean.d. a mistake has been made in computations, since z cannot be negative.

Answers

Answer

A positive value of z indicates that the observation is above the mean, or it is further to the right of the mean than one standard deviation.

Step-by-step explanation:

a. the number of standard deviations of an observation is below the mean.

In a standard normal distribution, the mean is 0 and the standard deviation is 1.

A negative value of z indicates that the observation is below the mean, or in other words, it is further to the left of the mean than one standard deviation.

Similarly, a positive value of z indicates that the observation is above the mean, or it is further to the right of the mean than one standard deviation.

To know more about standard deviations refer here

https://brainly.com/question/23907081#

#SPJ11

A deli wraps its cylindrical containers of hot food items with plastic wrap. The containers have a diameter of 3.5 inches and a height of 4 inches. What is the minimum amount of plastic wrap needed to completely wrap 6 containers? Round your answer to the nearest tenth and approximate using π = 3.14.

44.0 in2
63.2 in2
379.2 in2
505.5 in2

Answers

The minimum amount of plastic wrap needed to completely wrap 6 containers is c.379.2 in2 therefore option c.379.2 is correct.

To calculate the surface area that needs to be covered by plastic wrap, we need to find the lateral surface area of each container and multiply it by the number of containers, and then add the surface area of the top and bottom of each container.

The lateral surface area of a cylinder is given by the formula:

Lateral Surface Area = height x circumference

where circumference = π x diameter

Substituting the given values, we get:

Lateral Surface Area = 4 x 3.14 x 3.5 = 43.96 square inches

The surface area of the top and bottom of each container is given by the formula:

Surface Area of top and bottom = π x (radius)2

Substituting the given values, we get:

Surface Area of top and bottom = 3.14 x (1.75)2 = 9.62 square inches

So, the total surface area that needs to be covered by plastic wrap for one container is:

Total Surface Area = Lateral Surface Area + 2 x Surface Area of top and bottom

Total Surface Area = 43.96 + 2 x 9.62 = 63.2 square inches (rounded to the nearest tenth)

Therefore, the minimum amount of plastic wrap needed to completely wrap 6 containers is:

6 x Total Surface Area = 6 x 63.2 = 379.2 square inches (rounded to the nearest tenth)

Thus, the answer is 379.2 in2.

for such more question on surface area

https://brainly.com/question/27987869

#SPJ11

Determine whether the series is convergent or divergent.
1+12√2+13√3+14√4+15√5⋯

Answers

The series 1 + 12√2 + 13√3 + 14√4 + 15√5 + ... is convergent.

To determine whether the series 1 + 12√2 + 13√3 + 14√4 + 15√5 + ... is convergent or divergent, we can use the comparison test.

Note that for n ≥ 2, we have: n√n > n√(n-1)

This is because n√n - (n-1)√(n-1) = n(√n - √(n-1)) > 0. Therefore, we can write: n√n > (n-1)√n

Multiplying both sides by n and simplifying, we get:

n^2√n > (n-1)n√n

n^2√n > n^2√(n-1)

Taking the square root of both sides, we get: n√n > √(n-1)n

Using this inequality, we can compare the given series to the series:

1 + 12√2 + 13√3 + 14√4 + 15√5 + ...

1 + 12√2 + 13√3 + 14√4 + 15√5 + ...

1 + 12√2 + 13√3 + 14√4 + 15√5 + ...

1 + 2√2 + 3√3 + 4√4 + 5√5 + ...

Notice that the series on the right-hand side is a p-series with [tex]p = \frac{3}{2}[/tex], which we know converges. Therefore, the series on the left-hand side, which is greater than the convergent series on the right-hand side, must also converge by the comparison test.

Hence, the series 1 + 12√2 + 13√3 + 14√4 + 15√5 + ... is convergent.

To know more about "convergent series" refer here:

https://brainly.com/question/15415793#

#SPJ11

Chords: A chord of a circle is a segment that you draw from one point on the circle to another point on the circle. A chord always stays inside the circle. ... Tangent: A tangent to a circle is a line, ray, or segment that touches the outside of the circle in exactly one point. It never crosses into the circle.

Answers

The tangent would be drawnperpendicular to that radius at the point of contact between the circle and the tangent line. If you were to construct a tangent line that passes through the center of the circle, it would also be a diameter of the circle.

Chords and tangents of a circleA chord of a circle is a line segment that joins any two points on the circle. It is important to note that a chord always stays inside the circle. Moreover, if a chord passes through the center of the circle, it is called a diameter. This is because it joins two points on the circle and passes through its center.A tangent to a circle is a line that touches the circle in exactly one point. Tangent lines are perpendicular to the radius of the circle at the point of contact. They are always outside the circle and never cross into the circle.

Note that the point of contact between the circle and the tangent line is called the point of tangency. The tangent line provides a flat surface or a platform for the circle to rest on and it also helps to support the circle.If you were to construct a tangent at a given point on a circle, you would first draw a radius of the circle through that point. The tangent would be drawn perpendicular to that radius at the point of contact between the circle and the tangent line. If you were to construct a tangent line that passes through the center of the circle, it would also be a diameter of the circle.

Learn more about Surface here,What is the surface area?

https://brainly.com/question/16519513

#SPJ11

From a box containing 4 black balls and 2 green balls, 3 balls are drawn in succession, each ball being replaced in the box before the next draw is made. find the probability distribution for the number of green balls.

Answers

The probability distribution for the number of green balls drawn from a box containing 4 black balls and 2 green balls, with three draws made with replacement, is as follows: the probability of drawing 0 green balls is 1/8, the probability of drawing 1 green ball is 3/8, the probability of drawing 2 green balls is 3/8, and the probability of drawing 3 green balls is 1/8.

When drawing balls with replacement, each draw is independent of the previous draws. In this scenario, there are a total of 6 balls in the box, with 2 of them being green and 4 of them being black.

To find the probability distribution, we consider all possible outcomes for the number of green balls drawn. Since there are only 2 green balls in the box, the maximum number of green balls that can be drawn is 2.

The probability of drawing 0 green balls can be calculated as (4/6) * (4/6) * (4/6) = 64/216 = 1/8.

The probability of drawing 1 green ball can be calculated as (2/6) * (4/6) * (4/6) + (4/6) * (2/6) * (4/6) + (4/6) * (4/6) * (2/6) = 96/216 = 3/8.

The probability of drawing 2 green balls can be calculated as (2/6) * (2/6) * (4/6) + (2/6) * (4/6) * (2/6) + (4/6) * (2/6) * (2/6) = 96/216 = 3/8.

Lastly, the probability of drawing 3 green balls can be calculated as (2/6) * (2/6) * (2/6) = 8/216 = 1/27.

Therefore, the probability distribution for the number of green balls drawn is: P(0 green balls) = 1/8, P(1 green ball) = 3/8, P(2 green balls) = 3/8, and P(3 green balls) = 1/8.

Learn more about probability distribution here:

https://brainly.com/question/29062095

#SPJ11

please help quickly. Nsed help

Answers

Answer: Please see attached image for the graphed and explanation.

Step-by-step explanation:

Can someone explain how to do this and how do I get the answer

Answers

The value of x in the chord of the circle using the chord-chord power theorem is 8.

What is the value of x?

Chord - chord power theorem simply state that "If two chords of a circle intersect, then the product of the measures of the parts of one chord is equal or the same as the product of the measures of the parts of the other chord".

From the diagram:

The first chord has consist of 2 segments:

Segment 1 = 10

Segment 2 = 4

The second chord also consist of 2 sgements:

Segment 1 = 5

Segment 2 = x

Now, usig the Chord-chord power theorem:

10 × 4 = 5 × x

Solve for x:

40 = 5x

5x = 40

Divide both sides by 5

5x/5 = 40/5

x = 40/5

x = 8.

Therefore, the value of x is 8.

Learn more about the Chord-chord power theorem here: https://brainly.com/question/15298662

#SPJ1

Rewrite the expression in standard form (use the fewest number of symbols and character as possible) 5g times 7h

Answers

The expression given 5g times 7h as required to be rewritten in the task content is; 35gh.

What is the standard form representation of 5g times 7h?

It follows from the task content that the rewritten form of the expression 5g times 7h is to be determined.

Since the given expression can be written algebraically as; 5g × 7h

i.e 5 × 7 × g × h

= 35gh.

Consequently, the rewritten form using the fewest number of symbols and characters is; 35gh.

Read more on multiplication of algebraic expressions;

https://brainly.com/question/32318047

#SPJ4

1) Let A = {1, 2, 3} and B = {a,b}. Answer the following.
a) What is B ⨯ A ? Specify the set by listing elements.
b) What is A ⨯ B ? Specify the set by listing elements.
c) Explain why |B ⨯ A| = |A ⨯ B| when B ⨯ A ≠ A ⨯ B ?

Answers

B ⨯ A = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.

A ⨯ B = {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}.

When A and B have the same cardinality, the sets B ⨯ A and A ⨯ B have the same number of elements, and therefore the same cardinality.

We have,

a)

B ⨯ A is the Cartesian product of B and A, which is the set of all ordered pairs (b, a) where b is an element of B and a is an element of A.

Therefore,

B ⨯ A = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.

b)

A ⨯ B is the Cartesian product of A and B, which is the set of all ordered pairs (a,b) where a is an element of A and b is an element of B.

Therefore,

A ⨯ B = {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}.

c)

The cardinality of a set is the number of elements in that set.

We can prove that |B ⨯ A| = |A ⨯ B| by showing that they have the same number of elements.

Let n be the number of elements in A, and let m be the number of elements in B.

|B ⨯ A| = m × n because for each element in B, there are n elements in A that can be paired with it.

|A ⨯ B| = n × m because for each element in A, there are m elements in B that can be paired with it.

Since multiplication is commutative, m × n = n × m.

So,

|B ⨯ A| = |A ⨯ B|.

The statement "B ⨯ A ≠ A ⨯ B" is not always true, but when it is, it means that A and B have different cardinalities.

In this case, |B ⨯ A| ≠ |A ⨯ B| because the order in which we take the Cartesian product matters.

However, when A and B have the same cardinality, the sets B ⨯ A and A ⨯ B have the same number of elements, and therefore the same cardinality.

Thus,

B ⨯ A = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.

A ⨯ B = {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}.

When A and B have the same cardinality, the sets B ⨯ A and A ⨯ B have the same number of elements, and therefore the same cardinality.

Learn more about sets here:

https://brainly.com/question/8053622

#SPJ1

A is the event that the student drives.
B is the event that the student went to the movies in the past month.
A Venn Diagram. One circle is labeled A (A and B Superscript C Baseline 0.06), another is labeled B (A Superscript C Baseline and B 0.22), and the shared area is labeled A and B (0.35). The area outside of the diagram is labeled A Superscript C Baseline and B superscript C Baseline 0.37.
What is P(Ac)?
0.06
0.22
0.59
0.78


Answer is C

Answers

The answer to the given problem P([tex]A^{c}[/tex]) is option C) 0.59

In the Venn diagram, event A represents the set of students who drove, and event B represents the set of students who went to the movies in the past month. The intersection of A and B, denoted by A and B, represents the set of students who both drove and went to the movies in the past month. The complement of A, denoted by [tex]A^{c}[/tex], represents the set of students who did not drive, and the complement of B, denoted by [tex]B^{c}[/tex], represents the set of students who did not go to the movies in the past month.

From the given values, we know that the probability of A and [tex]B^{c}[/tex]  is 0.06, the probability of A and B is 0.35, the probability of [tex]A^{c}[/tex] and B is 0.22, and the probability of  [tex]A^{c}[/tex] and [tex]B^{c}[/tex]   is 0.37. We need to find the probability of    P([tex]A^{c}[/tex]), which is the probability that the student did not drive or go to the movies in the past month.

To find P([tex]A^{c}[/tex]), we can use the formula P([tex]A^{c}[/tex]) = P([tex]A^{c}[/tex]and B) + P([tex]A^{c}[/tex] and [tex]B^{c}[/tex] ). Substituting the given values, we get P([tex]A^{c}[/tex]) = 0.22 + 0.37 = 0.59.

Therefore, the answer to P([tex]A^{c}[/tex]) is option C) 0.59

To know more about Venn Diagrams here

https://brainly.com/question/29301560

#SPJ1

Other Questions
Translate the following arguments into symbolic form. Then determine whether each is valid or invalid by constructing a truth table for each.If national elections deteriorate into TV popularity contests, then smooth-talking morons will get elected. Therefore, if national elections do not deteriorate into TV popularity contests, then smooth-talking morons will not get elected. When benefits are concentrated and costs are diffused:A) resources get wasted on projects with low benefits and high costs.B) fewer projects with low benefits and high costs get developed.C) resources get devoted to projects with high benefits and low costs.D) more projects with high benefits and low costsgetdeveloped. a negative reinforcer ________ the behavior it follows. Who is exempt from gross income tax? I am atempting my math homework but I do not understand this question It says "Vera spent 0.04 of of the earnings on a new phone apps What percent of monthly earnings did she spend on phone apps" Can someone help? can somebody help me I been doing this all day please dont guess its for a testdecide if thee absolute value inequality is an "and" compound inequality, an "or" compound inequality or nether.1. |5+m| You swam 4 sets of 200 yards and your friend swam 5 sets of 150 yards. How many more yards did you swim? D.cotx1+cscxcotx1-cscx= 2 sec xverify step by step find x and mut pleaase Name at least 3 characteristics of other street gangs What happens at the end of A Farewell to Arms? What are the benefits of stretching? x^2 = 361 Which represents the solution of the given equation? If y = 3x - 7,x > 0, what is the minimum product of x2y? What is the simplified value of the exponential expression 16 1/4 What lesson did the pine tree learn? Question 1 of 15 Which invention was created in China during the Han dynasty? OA. A plastic that could be easily shaped B. A compass for navigating the seas C. A system for cleaning wastewater D. A method for mixing concrete ***See attachment***Write notes for both documents: Must include at least two sentences about its message, brief background on the leader, and choose a quote and reveal whats trying to say. Which of the following could be responsible for atherosclerosis and should be eliminated from diet for health reasons? ANSWER: butter olive oil lard butter and lard Separation of powers means that each branch of the government has it's own set of powers unique to the branch that possess them.Separation of powers means that each branch of the government has its own set of powers unique to the branch that possess them.TrueFalse